
Chapitre 1 : Introduction et vue d'ensemble

Ce chapitre présente Bitcoin Core, le logiciel de référence du réseau Bitcoin, et offre une vision d'ensemble de son archi‐

tecture avant d'entrer dans les détails techniques.

Fil conducteur : d'abord, comprendre ce qu'est un nœud complet (bitcoind) et ce qu'il garantit. Ensuite, voir

comment le code de Bitcoin Core est organisé. Enfin, suivre le trajet d'une transaction, de sa création jusqu'à ses

confirmations.

1.1 Qu'est-ce que Bitcoin Core ?

Constat observable

Bitcoin Core est un logiciel libre.

Il permet de se connecter au réseau Bitcoin, de valider intégralement les transactions et les blocs, et de relayer des informations

entre les participants du réseau.

Il constitue l'implémentation de référence du protocole Bitcoin.

Dans Bitcoin, une transaction est un message qui propose de déplacer des bitcoins.

Un bloc est un lot de transactions validées, ajouté à la chaîne de blocs (blockchain), l'historique public du système.

Le programme principal, appelé bitcoind (pour "Bitcoin daemon", c'est-à-dire "démon Bitcoin" — un programme qui s'exé‐

cute en arrière-plan), remplit le rôle de nœud complet.

Il télécharge et vérifie la chaîne de blocs depuis 2009, puis maintient une copie locale de l'état du réseau.¹

Il existe deux manières courantes de configurer le stockage d'un nœud complet.

Dans une configuration dite « archive », bitcoind conserve l'ensemble des blocs sur disque : c'est une bibliothèque qui garde

tous les volumes depuis 2009.

C'est utile pour analyser l'historique et pour aider d'autres nœuds à se synchroniser.

En mode pruning (élagage), bitcoind vérifie les blocs exactement de la même manière, puis supprime progressivement les

plus anciens pour économiser de l'espace disque.

Il conserve tout de même l'essentiel pour fonctionner au quotidien : l'état courant (quels fonds sont dépensables, et sous quelles

conditions).

La contrepartie est qu'il ne peut plus servir l'historique complet à d'autres nœuds.

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 1

Mécanisme

Quand bitcoind démarre, il effectue les opérations suivantes :

1. Initialisation : chargement de la configuration, vérification de l'environnement

2. Connexion au réseau : découverte d'autres nœuds et établissement de connexions pair-à-pair (peer-to-peer, P2P). En

pratique, un nœud parle directement à plusieurs voisins, sans serveur central.

3. Synchronisation : téléchargement et validation des blocs manquants

4. Fonctionnement normal : réception, validation et relais des nouvelles transactions et blocs

Le nœud maintient plusieurs structures de données essentielles :

La chaîne de blocs (blockchain) : l'historique complet et ordonné de tous les blocs, depuis l'origine. Chaque bloc référence le

précédent par son hash, ce qui relie l'historique. Imaginez un grand registre public qui s'épaissit à chaque nouveau bloc.

L'ensemble des sorties non dépensées (UTXO set) : la liste de tous les UTXO ("Unspent Transaction Outputs" — sorties non

dépensées) disponibles. C'est l'état courant : quels fonds sont dépensables, et quelles preuves seront nécessaires pour les

dépenser.

La mempool ("memory pool") : la « salle d'attente » locale des transactions valides reçues mais pas encore confirmées. Elle

peut légèrement différer d'un nœud à l'autre.

Conséquence directe

Un nœud complet ne fait confiance à personne. Il vérifie lui-même chaque signature (preuve cryptographique d'autorisation),

chaque montant, chaque règle. C'est cette propriété qui permet à Bitcoin de fonctionner sans autorité centrale.

Ce que cela garantit : toute transaction ou bloc invalide sera rejeté, quelle que soit sa source.

Ce que cela ne garantit pas : que les transactions non confirmées seront effectivement incluses dans un bloc futur (cela dépend

des mineurs, qui tentent de produire les blocs).

À retenir

Bitcoin Core est le logiciel qui fait fonctionner le réseau Bitcoin. En tant que nœud complet, il vérifie indépendamment

toutes les règles du protocole sans faire confiance à aucun tiers.

Références

¹ Point d'entrée du démon : src/bitcoind.cpp, lignes 260-290 — fonction MAIN_FUNCTION qui initialise le NodeCon‐
text et lance l'application.

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 2

https://github.com/bitcoin/bitcoin/blob/master/src/bitcoind.cpp#L260-L290

1.2 Architecture générale du code source

Constat observable

Le code source de Bitcoin Core est organisé en modules distincts, chacun responsable d'une fonction précise. Cette séparation

permet de comprendre le système par parties et facilite la maintenance du logiciel.

Le répertoire principal src/ contient plus de 180 fichiers et une vingtaine de sous-répertoires.¹

Mécanisme

Les principaux modules sont :

Répertoire Rôle

crypto/ Fonctions cryptographiques (hachage, signatures)

consensus/ Règles de consensus (ce qui rend un bloc valide)

primitives/ Structures de base (transactions, blocs)

script/ Interpréteur du langage Script, qui exprime les règles pour dépenser des fonds

wallet/ Gestion des clés et des fonds de l'utilisateur

node/ Logique du nœud (gestion de la chaîne, mempool)

net/ Communication réseau pair-à-pair (peer-to-peer, P2P)

rpc/ Interface de commande à distance (Remote Procedure Call, RPC)

policy/ Règles locales de relais (policy), souvent plus strictes que le consensus

secp256k1/ Bibliothèque de cryptographie sur courbe elliptique

Le cœur du nœud est représenté par une structure appelée NodeContext .

C'est un objet C++ interne qui regroupe les références vers les composants principaux (gestionnaire de chaîne ChainstateMa‐
nager , mempool CTxMemPool , gestionnaire de connexions CConnman , etc.).²

Conséquence directe

Cette architecture modulaire signifie que :

Les règles de consensus (dans consensus/) sont séparées des règles de politique (dans policy/)

La cryptographie est isolée et peut être auditée indépendamment

Le portefeuille est optionnel — un nœud peut fonctionner sans

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 3

On peut voir le consensus comme une loi commune : si un bloc la viole, tous les nœuds le rejetteront.

La politique (policy) ressemble plutôt à un règlement intérieur : un nœud peut être plus strict sur ce qu'il accepte en mempool et

ce qu'il relaye, sans changer ce qui est valide dans un bloc.

Ce que cela garantit : une modification dans le portefeuille ne peut pas affecter les règles de validation des blocs.

Ce que cela ne garantit pas : que le code est exempt de bugs (d'où l'importance des audits et des tests).

À retenir

Le code de Bitcoin Core est organisé en modules : cryptographie, consensus, réseau, portefeuille. Cette séparation permet

d'auditer chaque partie indépendamment et limite les risques d'erreur.

Références

¹ Structure du répertoire source : src/

² Structure NodeContext regroupant tous les composants : src/node/context.h, lignes 56-99

1.3 Le cycle de vie d'une transaction

Constat observable

Une transaction Bitcoin passe par plusieurs étapes distinctes avant d'être considérée comme définitivement enregistrée.

Quand vous « envoyez » un paiement, la transaction ne part pas vers une banque : elle circule de nœud en nœud, jusqu'à être in‐

cluse dans un bloc.

Une transaction est un message qui décrit un transfert de fonds ; un bloc est un paquet de transactions ajouté à la chaîne de

blocs.

Comprendre ce cycle de vie est essentiel pour saisir le fonctionnement global du système.

Mécanisme

1

CRÉATION

Portefeuille
construit et signe

→ 2

PROPAGATION

Réseau P2P
diffuse aux pairs

→ 3

INCLUSION

Mineur
sélectionne et mine

→ 4

CONFIRMATION

Chaîne
s'allonge

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 4

https://github.com/bitcoin/bitcoin/tree/master/src
https://github.com/bitcoin/bitcoin/blob/master/src/node/context.h#L56-L99

Étape 1 : Création

L'utilisateur (via son portefeuille) construit une transaction qui :

Référence des fonds qu'il possède (des UTXO, "Unspent Transaction Outputs" — sorties de transactions non dépensées)

Spécifie les destinataires et les montants

Inclut une signature cryptographique — une sorte de sceau numérique mathématiquement inviolable qui prouve qu'il a le

droit de dépenser ces fonds¹

Étape 2 : Propagation

La transaction est envoyée aux nœuds connectés, qui la vérifient et la relaient à leurs propres voisins.

C'est un bouche-à-oreille technique : chaque nœud répète l'information à d'autres.

En quelques secondes, la transaction atteint une grande partie du réseau.²

Chaque nœud qui reçoit la transaction :

Vérifie sa validité (signatures, montants, format)

La stocke dans sa mempool si elle est valide

La transmet à ses pairs

Étape 3 : Inclusion dans un bloc

Un mineur est un participant qui tente de produire le prochain bloc.

Il sélectionne des transactions dans sa mempool, puis construit un bloc candidat : un bloc « en brouillon » qui respecte déjà les

règles de validité.

Ensuite, il cherche une preuve de travail (proof-of-work, PoW) : une énigme mathématique coûteuse à résoudre, mais facile à

vérifier.

Ce processus de recherche s'appelle le minage.

On peut l'imaginer comme une loterie où l'on essaie de trouver un « ticket gagnant ».

Quand il y parvient, il diffuse le bloc au réseau.³

Étape 4 : Confirmation

Le bloc contenant la transaction est ajouté à la chaîne.

À partir de là, chaque nouveau bloc empilé par-dessus rend un retour en arrière plus coûteux. On dit alors que la transaction

gagne une "confirmation" supplémentaire.

Confirmations Signification

0 Transaction en mempool, non confirmée

1 Incluse dans le dernier bloc

6 Considérée comme pratiquement irréversible

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 5

Conséquence directe

Ce que chaque étape garantit :

Après propagation : la transaction est connue du réseau, mais peut encore être remplacée ou ignorée

Après 1 confirmation : la transaction fait partie de la chaîne, mais une réorganisation — un événement rare où la chaîne se

restructure temporairement quand deux blocs sont trouvés simultanément — reste possible

Après 6 confirmations : une réorganisation nécessiterait une puissance de calcul colossale

Ce que cela ne garantit pas :

Une transaction non confirmée n'est jamais garantie d'être incluse

Le nombre de confirmations nécessaires dépend du montant : pour quelques euros, 1 confirmation suffit souvent

Pour des montants élevés, on attend fréquemment 6 confirmations (~1 heure), afin que le coût d'une attaque reste supérieur

au gain potentiel

À retenir

Une transaction passe par quatre étapes : création, propagation sur le réseau, inclusion dans un bloc par un mineur, puis

confirmation par les blocs suivants. Plus il y a de confirmations, plus la transaction est difficile à annuler.

Références

¹ Construction des transactions : src/wallet/spend.cpp — fonctions de création et signature

² Propagation des transactions : src/net_processing.cpp — gestion des messages inv , getdata , tx

³ Sélection des transactions pour le minage : src/node/miner.cpp — création des blocs candidats

Synthèse du chapitre

Ce premier chapitre a posé les fondations :

1. Bitcoin Core est le logiciel de référence qui fait fonctionner le réseau Bitcoin en tant que nœud complet indépendant

2. L'architecture est modulaire : cryptographie, consensus, réseau et portefeuille sont séparés

3. Le cycle de vie d'une transaction comprend quatre étapes : création → propagation → inclusion → confirmation

Le chapitre suivant plongera dans les primitives cryptographiques qui sous-tendent la sécurité de l'ensemble du système.

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 6

https://github.com/bitcoin/bitcoin/blob/master/src/wallet/spend.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/net_processing.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/node/miner.cpp

Termes techniques introduits

Terme Définition

Nœud complet (full node) Programme qui télécharge et vérifie intégralement toute la chaîne de blocs

Daemon Programme qui s'exécute en arrière-plan sans interface graphique

UTXO (Unspent Transaction

Output)

Sortie de transaction non encore dépensée ; représente des fonds disponibles

UTXO set Ensemble des UTXO disponibles ; état courant des fonds dépensables

Mempool (memory pool) Ensemble des transactions valides en attente d'inclusion dans un bloc

Signature cryptographique Preuve mathématique qu'une transaction est autorisée, sans révéler le secret utilisé

pour la produire

Confirmation Chaque bloc ajouté après celui contenant une transaction

Consensus Ensemble des règles que tous les nœuds doivent respecter

Politique (policy) Règles locales plus strictes que le consensus, pour le relais

Chaîne de blocs (blockchain) Historique ordonné des blocs, mis à jour au fil du temps

Pair-à-pair (peer-to-peer, P2P) Réseau sans serveur central, où les nœuds se connectent directement

Pruning (élagage) Mode où le nœud vérifie les blocs mais ne conserve pas l'historique complet sur disque

Mineur Participant qui produit des blocs en cherchant une preuve de travail

RPC (Remote Procedure Call) Interface de commande permettant de piloter bitcoind à distance

Script Langage qui exprime les règles à respecter pour dépenser des fonds

Preuve de travail (proof-of-work,

PoW)

Mécanisme coûteux à produire mais facile à vérifier, utilisé pour sécuriser l'ajout de

blocs

Bloc candidat Bloc en préparation, avant de trouver une preuve de travail valide

Réorganisation (reorg) Réécriture temporaire de la partie la plus récente de la chaîne, pouvant retirer des

confirmations

chapitre 1 - introduction et vue d'ensemble - livre blanc sur le bitcoin - Hadrien Blanc 7

